phase 1) sampling: when $S_{1t}$ is high, input voltage is sampled on $C_1$ and $C_f$. For simplicity, let's assume $C_1 = C_f = C$. Total charge saved on $C_1$ and $C_f$ is $q=2 \times C \times V_i$.
phase 2) amplification: when $S_2$ is high and $S_1$ is low, pre-charged $C_1$ and $C_f$ capacitors are placed in a feedback loop with an amplifier. let's review the following cases:
case (a) $C_1$ left plat is floating and $C_f$ is placed in the feedback loop.
case (a) $C_1$ left plate is floating. |
case (b) left plate of $C_1$ capacitor is connected to ground. In this case, op-amp feedback loop pulls node $V_x$ to zero volt.This means that $C_1$ holds zero coulomb of charge. In addition, node $V_x$ is a high impedance node; in equilibrium, the original $q$ charge that was saved on $C_1$ needs to be restored at node $V_x$. In other words, in equilibrium, $C_f$ needs to store $2\times q$ coulomb of charge, i.e. $V_o=2\times V_i$. This is possible because op-amp can inject charge into the feedback loop at its output (low impedance node).
case (b) $C_1$ left plate is ground. |
case(c) left plate of $C_1$ is connected to a voltage source $V_d$. Following the logic of case (b), in equilibrium, $C_1$ stores $q_1 = \left(V_d-V_x \right)C_1 = V_d C_1$ coulomb of charge. originally, $C_1$ stored $q = C_1 V_i$ coulomb of charge. The difference, between $q$ and $q_1$ should be stored on $C_f$ (because node $V_x$ is high impedance). Consequently, in equilibrium,
$V_o = \frac{q+q_2}{C_f} = \frac{2q-q_1}{C_f} = C_1 \frac{2V_i-V_d}{C_f} = 2V_i-V_d$.
$V_o = \frac{q+q_2}{C_f} = \frac{2q-q_1}{C_f} = C_1 \frac{2V_i-V_d}{C_f} = 2V_i-V_d$.
case (c) $C_1$ left plate is connected to $V_d$. |
case (c) is a representation of MDAC (in this example 1 bit) with 2x amplification gain. $V_o$ is the residual voltage that is transferred to the next pipeline stage.
No comments:
Post a Comment