Friday, June 15, 2018

integrated phase noise formula

given the following SSB phase noise profile, the following calculates SSB integrated phase noise between $\left[ f_0, f_1\right]$:

 \begin{eqnarray} P_{\text{integ}} \left[ \text{dBc} \right] &=& P_0 \left[ \text{dBc} \right] + A \log_{10} \left(f_0\right) -10 \log_{10}\left(\frac{A}{10} -1\right) \nonumber \\ && + 10 \log_{10}\left( f_0^{\left(1- \frac{A}{10}\right)} - f_1^{\left(1- \frac{A}{10}\right)} \right) \end{eqnarray}



if $\frac{f_1}{f_0}=10$, what is the equivalent white noise PSD [$P_{\text{white noise}}$]?
(A) if $A=10$, i.e. pure flicker; not integrated: $P_{\text{white noise}} = P_0-6.4\text{dB}$.
(B) if $A=20$, i.e. non-flicker region of phase noise: $P_{\text{white noise}} = P_0-10\text{dB}$.
(C) if $A=30$, i.e. flicker region:  $P_{\text{white noise}} = P_0-13\text{dB}$.


No comments: